Computer Science > Cryptography and Security
[Submitted on 27 Oct 2022]
Title:A Unified Blockchain-Semantic Framework for Wireless Edge Intelligence Enabled Web 3.0
View PDFAbstract:Web 3.0 enables user-generated contents and user-selected authorities. With decentralized wireless edge computing architectures, Web 3.0 allows users to read, write, and own contents. A core technology that enables Web 3.0 goals is blockchain, which provides security services by recording content in a decentralized and transparent manner. However, the explosion of on-chain recorded contents and the fast-growing number of users cause increasingly unaffordable computing and storage resource consumption. A promising paradigm is to analyze the semantic information of contents that can convey precisely the desired meanings without consuming many resources. In this article, we propose a unified blockchain-semantic ecosystems framework for wireless edge intelligence-enabled Web 3.0. Our framework consists of six key components to exchange semantic demands. We then introduce an Oracle-based proof of semantic mechanism to implement on-chain and off-chain interactions of Web 3.0 ecosystems on semantic verification algorithms while maintaining service security. An adaptive Deep Reinforcement Learning-based sharding mechanism on Oracle is designed to improve interaction efficiency, which can facilitate Web 3.0 ecosystems to deal with varied semantic demands. Finally, a case study is presented to show that the proposed framework can dynamically adjust Oracle settings according to varied semantic demands.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.