Electrical Engineering and Systems Science > Audio and Speech Processing
[Submitted on 27 Oct 2022]
Title:Time-Domain Based Embeddings for Spoofed Audio Representation
View PDFAbstract:Anti-spoofing is the task of speech authentication. That is, identifying genuine human speech compared to spoofed speech. The main focus of this paper is to suggest new representations for genuine and spoofed speech, based on the probability mass function (PMF) estimation of the audio waveforms' amplitude.
We introduce a new feature extraction method for speech audio signals: unlike traditional methods, our method is based on direct processing of time-domain audio samples. The PMF is utilized by designing a feature extractor based on different PMF distances and similarity measures. As an additional step, we used filter-bank preprocessing, which significantly affects the discriminative characteristics of the features and facilitates convenient visualization of possible clustering of spoofing attacks. Furthermore, we use diffusion maps to reveal the underlying manifold on which the data lies.
The suggested embeddings allow the use of simple linear separators to achieve decent performance. In addition, we present a convenient way to visualize the data, which helps to assess the efficiency of different spoofing techniques.
The experimental results show the potential of using multi-channel PMF based features for the anti-spoofing task, in addition to the benefits of using diffusion maps both as an analysis tool and as an embedding tool.
Current browse context:
eess.AS
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.