Computer Science > Human-Computer Interaction
[Submitted on 31 Oct 2022]
Title:Visualising Generative Spaces Using Convolutional Neural Network Embeddings
View PDFAbstract:As academic interest in procedural content generation (PCG) for games has increased, so has the need for methodologies for comparing and contrasting the output spaces of alternative PCG systems. In this paper we introduce and evaluate a novel approach for visualising the generative spaces of level generation systems, using embeddings extracted from a trained convolutional neural network. We evaluate the approach in terms of its ability to produce 2D visualisations of encoded game levels that correlate with their behavioural characteristics. The results across two alternative game domains, Super Mario and Boxoban, indicate that this approach is powerful in certain settings and that it has the potential to supersede alternative methods for visually comparing generative spaces. However its performance was also inconsistent across the domains investigated in this work, as well as it being susceptible to intermittent failure. We conclude that this method is worthy of further evaluation, but that future implementations of it would benefit from significant refinement.
Submission history
From: Oliver Withington [view email][v1] Mon, 31 Oct 2022 16:44:57 UTC (1,791 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.