Computer Science > Computation and Language
[Submitted on 2 Nov 2022]
Title:Assessing Resource-Performance Trade-off of Natural Language Models using Data Envelopment Analysis
View PDFAbstract:Natural language models are often summarized through a high-dimensional set of descriptive metrics including training corpus size, training time, the number of trainable parameters, inference times, and evaluation statistics that assess performance across tasks. The high dimensional nature of these metrics yields challenges with regard to objectively comparing models; in particular it is challenging to assess the trade-off models make between performance and resources (compute time, memory, etc.).
We apply Data Envelopment Analysis (DEA) to this problem of assessing the resource-performance trade-off. DEA is a nonparametric method that measures productive efficiency of abstract units that consume one or more inputs and yield at least one output. We recast natural language models as units suitable for DEA, and we show that DEA can be used to create an effective framework for quantifying model performance and efficiency. A central feature of DEA is that it identifies a subset of models that live on an efficient frontier of performance. DEA is also scalable, having been applied to problems with thousands of units. We report empirical results of DEA applied to 14 different language models that have a variety of architectures, and we show that DEA can be used to identify a subset of models that effectively balance resource demands against performance.
Current browse context:
cs.CL
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.