Computer Science > Robotics
[Submitted on 10 Nov 2022]
Title:Coordinating CAV Swarms at Intersections with a Deep Learning Model
View PDFAbstract:Connected and automated vehicles (CAVs) are viewed as a special kind of robots that have the potential to significantly improve the safety and efficiency of traffic. In contrast to many swarm robotics studies that are demonstrated in labs by employing a small number of robots, CAV studies aims to achieve cooperative driving of unceasing robot swarm flows. However, how to get the optimal passing order of such robot swarm flows even for a signal-free intersection is an NP-hard problem (specifically, enumerating based algorithm takes days to find the optimal solution to a 20-CAV scenario). Here, we introduce a novel cooperative driving algorithm (AlphaOrder) that combines offline deep learning and online tree searching to find a near-optimal passing order in real-time. AlphaOrder builds a pointer network model from solved scenarios and generates near-optimal passing orders instantaneously for new scenarios. Furthermore, our approach provides a general approach to managing preemptive resource sharing between swarm robotics (e.g., scheduling multiple automated guided vehicles (AGVs) and unmanned aerial vehicles (UAVs) at conflicting areas
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.