Computer Science > Machine Learning
[Submitted on 19 Nov 2022 (v1), last revised 31 May 2023 (this version, v2)]
Title:Unifying Label-inputted Graph Neural Networks with Deep Equilibrium Models
View PDFAbstract:The success of Graph Neural Networks (GNN) in learning on non-Euclidean data arouses many subtopics, such as Label-inputted GNN (LGNN) and Implicit GNN (IGNN). LGNN, explicitly inputting supervising information (a.k.a. labels) in GNN, integrates label propagation to achieve superior performance, but with the dilemma between its propagating distance and adaptiveness. IGNN, outputting an equilibrium point by iterating its network infinite times, exploits information in the entire graph to capture long-range dependencies, but with its network constrained to guarantee the existence of the equilibrium. This work unifies the two subdomains by interpreting LGNN in the theory of IGNN and reducing prevailing LGNNs to the form of IGNN. The unification facilitates the exchange between the two subdomains and inspires more studies. Specifically, implicit differentiation of IGNN is introduced to LGNN to differentiate its infinite-range label propagation with constant memory, making the propagation both distant and adaptive. Besides, the masked label strategy of LGNN is proven able to guarantee the well-posedness of IGNN in a network-agnostic manner, granting its network more complex and thus more expressive. Combining the advantages of LGNN and IGNN, Label-inputted Implicit GNN (LI-GNN) is proposed. It can be widely applied to any specific GNN to boost its performance. Node classification experiments on two synthesized and six real-world datasets demonstrate its effectiveness. Code is available at this https URL
Submission history
From: Yi Luo [view email][v1] Sat, 19 Nov 2022 09:28:53 UTC (383 KB)
[v2] Wed, 31 May 2023 02:04:23 UTC (295 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.