Computer Science > Robotics
[Submitted on 23 Nov 2022 (v1), last revised 29 Jul 2023 (this version, v2)]
Title:Stackelberg Meta-Learning for Strategic Guidance in Multi-Robot Trajectory Planning
View PDFAbstract:Trajectory guidance requires a leader robotic agent to assist a follower robotic agent to cooperatively reach the target destination. However, planning cooperation becomes difficult when the leader serves a family of different followers and has incomplete information about the followers. There is a need for learning and fast adaptation of different cooperation plans. We develop a Stackelberg meta-learning approach to address this challenge. We first formulate the guided trajectory planning problem as a dynamic Stackelberg game to capture the leader-follower interactions. Then, we leverage meta-learning to develop cooperative strategies for different followers. The leader learns a meta-best-response model from a prescribed set of followers. When a specific follower initiates a guidance query, the leader quickly adapts to the follower-specific model with a small amount of learning data and uses it to perform trajectory guidance. We use simulations to elaborate that our method provides a better generalization and adaptation performance on learning followers' behavior than other learning approaches. The value and the effectiveness of guidance are also demonstrated by the comparison with zero guidance scenarios.
Submission history
From: Yuhan Zhao [view email][v1] Wed, 23 Nov 2022 22:45:46 UTC (615 KB)
[v2] Sat, 29 Jul 2023 19:44:27 UTC (1,502 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.