Computer Science > Sound
[Submitted on 24 Nov 2022]
Title:TESSP: Text-Enhanced Self-Supervised Speech Pre-training
View PDFAbstract:Self-supervised speech pre-training empowers the model with the contextual structure inherent in the speech signal while self-supervised text pre-training empowers the model with linguistic information. Both of them are beneficial for downstream speech tasks such as ASR. However, the distinct pre-training objectives make it challenging to jointly optimize the speech and text representation in the same model. To solve this problem, we propose Text-Enhanced Self-Supervised Speech Pre-training (TESSP), aiming to incorporate the linguistic information into speech pre-training. Our model consists of three parts, i.e., a speech encoder, a text encoder and a shared encoder. The model takes unsupervised speech and text data as the input and leverages the common HuBERT and MLM losses respectively. We also propose phoneme up-sampling and representation swapping to enable joint modeling of the speech and text information. Specifically, to fix the length mismatching problem between speech and text data, we phonemize the text sequence and up-sample the phonemes with the alignment information extracted from a small set of supervised data. Moreover, to close the gap between the learned speech and text representations, we swap the text representation with the speech representation extracted by the respective private encoders according to the alignment information. Experiments on the Librispeech dataset shows the proposed TESSP model achieves more than 10% improvement compared with WavLM on the test-clean and test-other sets. We also evaluate our model on the SUPERB benchmark, showing our model has better performance on Phoneme Recognition, Acoustic Speech Recognition and Speech Translation compared with WavLM.
Current browse context:
cs.SD
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.