Computer Science > Computation and Language
[Submitted on 1 Dec 2022 (v1), last revised 15 Jun 2023 (this version, v2)]
Title:Inconsistency Ranking-based Noisy Label Detection for High-quality Data
View PDFAbstract:The success of deep learning requires high-quality annotated and massive data. However, the size and the quality of a dataset are usually a trade-off in practice, as data collection and cleaning are expensive and time-consuming. In real-world applications, especially those using crowdsourcing datasets, it is important to exclude noisy labels. To address this, this paper proposes an automatic noisy label detection (NLD) technique with inconsistency ranking for high-quality data. We apply this technique to the automatic speaker verification (ASV) task as a proof of concept. We investigate both inter-class and intra-class inconsistency ranking and compare several metric learning loss functions under different noise settings. Experimental results confirm that the proposed solution could increase both the efficient and effective cleaning of large-scale speaker recognition datasets.
Submission history
From: Hanzhi Yin [view email][v1] Thu, 1 Dec 2022 03:09:33 UTC (1,574 KB)
[v2] Thu, 15 Jun 2023 14:08:55 UTC (2,374 KB)
Current browse context:
cs.CL
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.