Computer Science > Distributed, Parallel, and Cluster Computing
[Submitted on 2 Dec 2022]
Title:DisaggRec: Architecting Disaggregated Systems for Large-Scale Personalized Recommendation
View PDFAbstract:Deep learning-based personalized recommendation systems are widely used for online user-facing services in production datacenters, where a large amount of hardware resources are procured and managed to reliably provide low-latency services without disruption. As the recommendation models continue to evolve and grow in size, our analysis projects that datacenters deployed with monolithic servers will spend up to 12.4x total cost of ownership (TCO) to meet the requirement of model size and complexity over the next three years. Moreover, through in-depth characterization, we reveal that the monolithic server-based cluster suffers resource idleness and wastes up to 30% TCO by provisioning resources in fixed proportions. To address this challenge, we propose DisaggRec, a disaggregated system for large-scale recommendation serving. DisaggRec achieves the independent decoupled scaling-out of the compute and memory resources to match the changing demands from fast-evolving workloads. It also improves system reliability by segregating the failures of compute nodes and memory nodes. These two main benefits from disaggregation collectively reduce the TCO by up to 49.3%. Furthermore, disaggregation enables flexible and agile provisioning of increasing hardware heterogeneity in future datacenters. By deploying new hardware featuring near-memory processing capability, our evaluation shows that the disaggregated cluster achieves 21%-43.6% TCO savings over the monolithic server-based cluster across a three-year span of model evolution.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.