Computer Science > Formal Languages and Automata Theory
[Submitted on 2 Dec 2022]
Title:Semilinearity of Families of Languages
View PDFAbstract:Techniques are developed for creating new and general language families of only semilinear languages, and for showing families only contain semilinear languages. It is shown that for language families L that are semilinear full trios, the smallest full AFL containing L that is also closed under intersection with languages in NCM (where NCM is the family of languages accepted by NFAs augmented with reversal-bounded counters), is also semilinear. If these closure properties are effective, this also immediately implies decidability of membership, emptiness, and infiniteness for these general families. From the general techniques, new grammar systems are given that are extensions of well-known families of semilinear full trios, whereby it is implied that these extensions must only describe semilinear languages. This also implies positive decidability properties for the new systems. Some characterizations of the new families are also given.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.