Physics > Geophysics
[Submitted on 8 Dec 2022]
Title:Enhanced prediction accuracy with uncertainty quantification in monitoring CO2 sequestration using convolutional neural networks
View PDFAbstract:Monitoring changes inside a reservoir in real time is crucial for the success of CO2 injection and long-term storage. Machine learning (ML) is well-suited for real-time CO2 monitoring because of its computational efficiency. However, most existing applications of ML yield only one prediction (i.e., the expectation) for a given input, which may not properly reflect the distribution of the testing data, if it has a shift with respect to that of the training data. The Simultaneous Quantile Regression (SQR) method can estimate the entire conditional distribution of the target variable of a neural network via pinball loss. Here, we incorporate this technique into seismic inversion for purposes of CO2 monitoring. The uncertainty map is then calculated pixel by pixel from a particular prediction interval around the median. We also propose a novel data-augmentation method by sampling the uncertainty to further improve prediction accuracy. The developed methodology is tested on synthetic Kimberlina data, which are created by the Department of Energy and based on a CO2 capture and sequestration (CCS) project in California. The results prove that the proposed network can estimate the subsurface velocity rapidly and with sufficient resolution. Furthermore, the computed uncertainty quantifies the prediction accuracy. The method remains robust even if the testing data are distorted due to problems in the field data acquisition. Another test demonstrates the effectiveness of the developed data-augmentation method in increasing the spatial resolution of the estimated velocity field and in reducing the prediction error.
Current browse context:
physics.geo-ph
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.