Mathematics > Numerical Analysis
[Submitted on 12 Dec 2022]
Title:Scalable Recovery-based Adaptation on Quadtree Meshes for Advection-Diffusion-Reaction Problems
View PDFAbstract:We propose a mesh adaptation procedure for Cartesian quadtree meshes, to discretize scalar advection-diffusion-reaction problems. The adaptation process is driven by a recovery-based a posteriori estimator for the $L^2(\Omega)$-norm of the discretization error, based on suitable higher order approximations of both the solution and the associated gradient. In particular, a metric-based approach exploits the information furnished by the estimator to iteratively predict the new adapted mesh. The new mesh adaptation algorithm is successfully assessed on different configurations, and turns out to perform well also when dealing with discontinuities in the data as well as in the presence of internal layers not aligned with the Cartesian directions. A cross-comparison with a standard estimate--mark--refine approach and with other adaptive strategies available in the literature shows the remarkable accuracy and parallel scalability of the proposed approach.
Submission history
From: Pasquale Claudio Africa [view email][v1] Mon, 12 Dec 2022 14:57:02 UTC (989 KB)
Current browse context:
math.NA
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.