Electrical Engineering and Systems Science > Image and Video Processing
[Submitted on 13 Dec 2022 (v1), last revised 5 Apr 2023 (this version, v2)]
Title:AdvMIL: Adversarial Multiple Instance Learning for the Survival Analysis on Whole-Slide Images
View PDFAbstract:The survival analysis on histological whole-slide images (WSIs) is one of the most important means to estimate patient prognosis. Although many weakly-supervised deep learning models have been developed for gigapixel WSIs, their potential is generally restricted by classical survival analysis rules and fully-supervised learning requirements. As a result, these models provide patients only with a completely-certain point estimation of time-to-event, and they could only learn from the labeled WSI data currently at a small scale. To tackle these problems, we propose a novel adversarial multiple instance learning (AdvMIL) framework. This framework is based on adversarial time-to-event modeling, and integrates the multiple instance learning (MIL) that is much necessary for WSI representation learning. It is a plug-and-play one, so that most existing MIL-based end-to-end methods can be easily upgraded by applying this framework, gaining the improved abilities of survival distribution estimation and semi-supervised learning. Our extensive experiments show that AdvMIL not only could often bring performance improvement to mainstream WSI survival analysis methods at a relatively low computational cost, but also enables these methods to effectively utilize unlabeled data via semi-supervised learning. Moreover, it is observed that AdvMIL could help improving the robustness of models against patch occlusion and two representative image noises. The proposed AdvMIL framework could promote the research of survival analysis in computational pathology with its novel adversarial MIL paradigm.
Submission history
From: Pei Liu [view email][v1] Tue, 13 Dec 2022 12:02:05 UTC (7,870 KB)
[v2] Wed, 5 Apr 2023 04:36:51 UTC (9,353 KB)
Current browse context:
eess.IV
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.