Computer Science > Data Structures and Algorithms
[Submitted on 15 Dec 2022 (v1), last revised 27 Mar 2023 (this version, v2)]
Title:Min-max Submodular Ranking for Multiple Agents
View PDFAbstract:In the submodular ranking (SR) problem, the input consists of a set of submodular functions defined on a ground set of elements. The goal is to order elements for all the functions to have value above a certain threshold as soon on average as possible, assuming we choose one element per time. The problem is flexible enough to capture various applications in machine learning, including decision trees.
This paper considers the min-max version of SR where multiple instances share the ground set. With the view of each instance being associated with an agent, the min-max problem is to order the common elements to minimize the maximum objective of all agents -- thus, finding a fair solution for all agents. We give approximation algorithms for this problem and demonstrate their effectiveness in the application of finding a decision tree for multiple agents.
Submission history
From: Ruilong Zhang [view email][v1] Thu, 15 Dec 2022 09:28:07 UTC (1,612 KB)
[v2] Mon, 27 Mar 2023 17:53:52 UTC (1,608 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.