Electrical Engineering and Systems Science > Systems and Control
[Submitted on 16 Dec 2022]
Title:Predicting Autonomous Vehicle Collision Injury Severity Levels for Ethical Decision Making and Path Planning
View PDFAbstract:Developments in autonomous vehicles (AVs) are rapidly advancing and will in the next 20 years become a central part to our society. However, especially in the early stages of deployment, there is expected to be incidents involving AVs. In the event of AV incidents, decisions will need to be made that require ethical decisions, e.g., deciding between colliding into a group of pedestrians or a rigid barrier. For an AV to undertake such ethical decision making and path planning, simulation models of the situation will be required that are used in real-time on-board the AV. These models will enable path planning and ethical decision making to be undertaken based on predetermined collision injury severity levels. In this research, models are developed for the path planning and ethical decision making that predetermine knowledge regarding the possible collision injury severities, i.e., peak deformation of the AV colliding into the rigid barrier or the impact velocity of the AV colliding into a pedestrian. Based on such knowledge and using fuzzy logic, a novel nonlinear weighted utility cost function for the collision injury severity levels is developed. This allows the model-based predicted collision outcomes arising from AV peak deformation and AV-pedestrian impact velocity to be examined separately via weighted utility cost functions with a common structure. The general form of the weighted utility cost function exploits a fuzzy sets approach, thus allowing common utility costs from the two separate utility cost functions to be meaningfully compared. A decision-making algorithm, which makes use of a utilitarian ethical approach, ensures that the AV will always steer onto the path which represents the lowest injury severity level, hence utility cost to society.
Current browse context:
eess.SY
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.