Computer Science > Robotics
[Submitted on 24 Dec 2022 (v1), last revised 8 Jun 2023 (this version, v2)]
Title:Certification of Bottleneck Task Assignment with Shortest Path Criteria
View PDFAbstract:Minimising the longest travel distance for a group of mobile robots with interchangeable goals requires knowledge of the shortest length paths between all robots and goal destinations. Determining the exact length of the shortest paths in an environment with obstacles is NP-hard however. In this paper, we investigate when polynomial-time approximations of the shortest path search are sufficient to determine the optimal assignment of robots to goals. In particular, we propose an algorithm in which the accuracy of the path planning is iteratively increased. The approach provides a certificate when the uncertainties on estimates of the shortest paths become small enough to guarantee the optimality of the goal assignment. To this end, we apply results from assignment sensitivity assuming upper and lower bounds on the length of the shortest paths. We then provide polynomial-time methods to find such bounds by applying sampling-based path planning. The upper bounds are given by feasible paths, the lower bounds are obtained by expanding the sample set and leveraging the knowledge of the sample dispersion. We demonstrate the application of the proposed method with a multi-robot path-planning case study.
Submission history
From: Tony A. Wood [view email][v1] Sat, 24 Dec 2022 12:28:06 UTC (2,347 KB)
[v2] Thu, 8 Jun 2023 22:42:59 UTC (2,415 KB)
Current browse context:
cs.RO
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.