Computer Science > Computer Vision and Pattern Recognition
[Submitted on 9 Jan 2023]
Title:Cursive Caption Text Detection in Videos
View PDFAbstract:Textual content appearing in videos represents an interesting index for semantic retrieval of videos (from archives), generation of alerts (live streams) as well as high level applications like opinion mining and content summarization. One of the key components of such systems is the detection of textual content in video frames and the same makes the subject of our present study. This paper presents a robust technique for detection of textual content appearing in video frames. More specifically we target text in cursive script taking Urdu text as a case study. Detection of textual regions in video frames is carried out by fine-tuning object detectors based on deep convolutional neural networks for the specific case of text detection. Since it is common to have videos with caption text in multiple-scripts, cursive text is distinguished from Latin text using a script-identification module. Finally, detection and script identification are combined in a single end-to-end trainable system. Experiments on a comprehensive dataset of around 11,000 video frames report an F-measure of 0.91.
Current browse context:
cs.CV
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.