Computer Science > Sound
[Submitted on 17 Jan 2023 (v1), last revised 8 Jun 2023 (this version, v3)]
Title:Two Stage Contextual Word Filtering for Context bias in Unified Streaming and Non-streaming Transducer
View PDFAbstract:It is difficult for an E2E ASR system to recognize words such as entities appearing infrequently in the training data. A widely used method to mitigate this issue is feeding contextual information into the acoustic model. Previous works have proven that a compact and accurate contextual list can boost the performance significantly. In this paper, we propose an efficient approach to obtain a high quality contextual list for a unified streaming/non-streaming based E2E model. Specifically, we make use of the phone-level streaming output to first filter the predefined contextual word list then fuse it into non-casual encoder and decoder to generate the final recognition results. Our approach improve the accuracy of the contextual ASR system and speed up the inference process. Experiments on two datasets demonstrates over 20% CER reduction comparing to the baseline system. Meanwhile, the RTF of our system can be stabilized within 0.15 when the size of the contextual word list grows over 6,000.
Submission history
From: Zhanheng Yang [view email][v1] Tue, 17 Jan 2023 07:29:26 UTC (123 KB)
[v2] Sun, 21 May 2023 07:11:38 UTC (123 KB)
[v3] Thu, 8 Jun 2023 13:29:38 UTC (122 KB)
Current browse context:
cs.SD
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.