Quantum Physics
[Submitted on 18 Jan 2023 (v1), last revised 6 Jul 2023 (this version, v2)]
Title:On the linear friction many-body equation for dissipative spontaneous wavefunction collapse
View PDFAbstract:We construct and study the simplest universal dissipative Lindblad master equation for many-body systems with the purpose of a new dissipative extension of existing nonrelativistic theories of fundamental spontaneous decoherence and spontaneous wave function collapse in nature. It is universal as it is written in terms of second-quantized mass density $\hat \rho$ and current $\hat J$, thus making it independent of the material structure and its parameters. Assuming linear friction in the current, we find that the dissipative structure is strictly constrained. Following the general structure of our dissipative Lindblad equation, we derive and analyze the dissipative extensions of the two most known spontaneous wave function collapse models, the Diósi-Penrose and the continuous spontaneous localization models.
Submission history
From: Matteo Carlesso [view email][v1] Wed, 18 Jan 2023 17:07:31 UTC (14 KB)
[v2] Thu, 6 Jul 2023 17:42:10 UTC (15 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.