Computer Science > Machine Learning
[Submitted on 19 Jan 2023 (v1), last revised 4 Dec 2023 (this version, v3)]
Title:A Nonstochastic Control Approach to Optimization
View PDFAbstract:Selecting the best hyperparameters for a particular optimization instance, such as the learning rate and momentum, is an important but nonconvex problem. As a result, iterative optimization methods such as hypergradient descent lack global optimality guarantees in general.
We propose an online nonstochastic control methodology for mathematical optimization. First, we formalize the setting of meta-optimization, an online learning formulation of learning the best optimization algorithm from a class of methods. The meta-optimization problem over gradient-based methods can be framed as a feedback control problem over the choice of hyperparameters, including the learning rate, momentum, and the preconditioner.
Although the original optimal control problem is nonconvex, we show how recent methods from online nonstochastic control using convex relaxations can be used to overcome the challenge of nonconvexity, and obtain regret guarantees against the best offline solution. This guarantees that in meta-optimization, given a sequence of optimization problems, we can learn a method that attains convergence comparable to that of the best optimization method in hindsight from a class of methods.
Submission history
From: Xinyi Chen [view email][v1] Thu, 19 Jan 2023 06:08:01 UTC (31 KB)
[v2] Tue, 14 Feb 2023 18:04:51 UTC (527 KB)
[v3] Mon, 4 Dec 2023 18:19:03 UTC (492 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.