Computer Science > Neural and Evolutionary Computing
[Submitted on 31 Jan 2023 (v1), last revised 4 Dec 2023 (this version, v2)]
Title:Crossover Can Guarantee Exponential Speed-Ups in Evolutionary Multi-Objective Optimisation
View PDFAbstract:Evolutionary algorithms are popular algorithms for multiobjective optimisation (also called Pareto optimisation) as they use a population to store trade-offs between different objectives. Despite their popularity, the theoretical foundation of multiobjective evolutionary optimisation (EMO) is still in its early development. Fundamental questions such as the benefits of the crossover operator are still not fully understood. We provide a theoretical analysis of the well-known EMO algorithms GSEMO and NSGA-II to showcase the possible advantages of crossover: we propose classes of "royal road" functions on which these algorithms cover the whole Pareto front in expected polynomial time if crossover is being used. But when disabling crossover, they require exponential time in expectation to cover the Pareto front. The latter even holds for a large class of black-box algorithms using any elitist selection and any unbiased mutation operator. Moreover, even the expected time to create a single Pareto-optimal search point is exponential. We provide two different function classes, one tailored for one-point crossover and another one tailored for uniform crossover, and we show that immune-inspired hypermutations cannot avoid exponential optimisation times. Our work shows the first example of an exponential performance gap through the use of crossover for the widely used NSGA-II algorithm and contributes to a deeper understanding of its limitations and capabilities.
Submission history
From: Duc-Cuong Dang [view email][v1] Tue, 31 Jan 2023 15:03:34 UTC (37 KB)
[v2] Mon, 4 Dec 2023 14:44:44 UTC (94 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.