Astrophysics > Astrophysics of Galaxies
[Submitted on 6 Feb 2023]
Title:SUPER VII. Morphology and kinematics of H$α$ emission in AGN host galaxies at Cosmic noon using SINFONI
View PDFAbstract:We present spatially resolved H$\alpha$ properties of 21 type 1 AGN host galaxies at z$\sim$2 derived from the SUPER survey. These targets were observed with the adaptive optics capabilities of the SINFONI spectrograph, a near-infrared integral field spectrograph, that provided a median spatial resolution of 0.3 arcsec ($\sim$2 kpc). We model the H$\alpha$ emission line profile in each pixel to investigate whether it traces gas in the narrow line region or if it is associated with star formation. To do this, we first investigate the presence of resolved H$\alpha$ emission by removing the contribution of the AGN PSF. We find extended H$\alpha$ emission in sixteen out of the 21 type 1 AGN host galaxies (76%). Based on the BPT diagnostics, optical line flux ratios and the line widths (FWHM), we show that the H$\alpha$ emission in five galaxies is ionised by the AGN (30%), in four galaxies by star formation (25%) and for the rest (45%), the ionisation source is unconstrained. Two galaxies show extended H$\alpha$ FWHM $>$600 km/s, which is interpreted as a part of an AGN-driven outflow. Morphological and kinematic maps of H$\alpha$ emission in targets with sufficient signal-to-noise ratio suggest the presence of rotationally supported disks in six galaxies and possible presence of companions in four galaxies. In two galaxies, we find an anti-correlation between the locations of extended H$\alpha$ emission and [OIII]-based ionised outflows, indicating possible negative feedback at play. However, in the majority of galaxies, we do not find evidence of outflows impacting H$\alpha$ based star formation.
Current browse context:
astro-ph.GA
Change to browse by:
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.