Mathematics > Numerical Analysis
[Submitted on 7 Feb 2023 (v1), last revised 2 Nov 2023 (this version, v3)]
Title:A hybrid finite volume -- spectral element method for aeroacoustic problems
View PDFAbstract:We propose a hybrid Finite Volume (FV) - Spectral Element Method (SEM) for modelling aeroacoustic phenomena based on the Lighthill's acoustic analogy. First the fluid solution is computed employing a FV method. Then, the sound source term is projected onto the acoustic grid and the inhomogeneous Lighthill's wave equation is solved employing the SEM. The novel projection method computes offline the intersections between the acoustic and the fluid grids in order to preserve the accuracy. The proposed intersection algorithm is shown to be robust, scalable and able to efficiently compute the geometric intersection of arbitrary polyhedral elements. We then analyse the properties of the projection error, showing that if the fluid grid is fine enough we are able to exploit the accuracy of the acoustic solver and we numerically assess the obtained theoretical estimates. Finally, we address two relevant aeroacoustic benchmarks, namely the corotating vortex pair and the noise induced by a laminar flow around a squared cylinder, to demonstrate in practice the effectiveness of the projection method when dealing with high order solvers. The flow computations are performed with OpenFOAM [46], an open-source finite volume library, while the inhomogeneous Lighthill's wave equation is solved with SPEED [31], an opensource spectral element library.
Submission history
From: Alberto Artoni [view email][v1] Tue, 7 Feb 2023 10:25:15 UTC (13,057 KB)
[v2] Thu, 13 Apr 2023 08:29:16 UTC (21,649 KB)
[v3] Thu, 2 Nov 2023 08:29:07 UTC (25,709 KB)
Current browse context:
math.NA
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.