Computer Science > Graphics
[Submitted on 7 Feb 2023 (v1), last revised 13 Feb 2023 (this version, v2)]
Title:In-the-wild Material Appearance Editing using Perceptual Attributes
View PDFAbstract:Intuitively editing the appearance of materials from a single image is a challenging task given the complexity of the interactions between light and matter, and the ambivalence of human perception. This problem has been traditionally addressed by estimating additional factors of the scene like geometry or illumination, thus solving an inverse rendering problem and subduing the final quality of the results to the quality of these estimations. We present a single-image appearance editing framework that allows us to intuitively modify the material appearance of an object by increasing or decreasing high-level perceptual attributes describing such appearance (e.g., glossy or metallic). Our framework takes as input an in-the-wild image of a single object, where geometry, material, and illumination are not controlled, and inverse rendering is not required. We rely on generative models and devise a novel architecture with Selective Transfer Unit (STU) cells that allow to preserve the high-frequency details from the input image in the edited one. To train our framework we leverage a dataset with pairs of synthetic images rendered with physically-based algorithms, and the corresponding crowd-sourced ratings of high-level perceptual attributes. We show that our material editing framework outperforms the state of the art, and showcase its applicability on synthetic images, in-the-wild real-world photographs, and video sequences.
Submission history
From: J Daniel Subias [view email][v1] Tue, 7 Feb 2023 17:22:55 UTC (34,724 KB)
[v2] Mon, 13 Feb 2023 15:29:54 UTC (34,724 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.