Computer Science > Machine Learning
[Submitted on 8 Feb 2023]
Title:Measuring the Privacy Leakage via Graph Reconstruction Attacks on Simplicial Neural Networks (Student Abstract)
View PDFAbstract:In this paper, we measure the privacy leakage via studying whether graph representations can be inverted to recover the graph used to generate them via graph reconstruction attack (GRA). We propose a GRA that recovers a graph's adjacency matrix from the representations via a graph decoder that minimizes the reconstruction loss between the partial graph and the reconstructed graph. We study three types of representations that are trained on the graph, i.e., representations output from graph convolutional network (GCN), graph attention network (GAT), and our proposed simplicial neural network (SNN) via a higher-order combinatorial Laplacian. Unlike the first two types of representations that only encode pairwise relationships, the third type of representation, i.e., SNN outputs, encodes higher-order interactions (e.g., homological features) between nodes. We find that the SNN outputs reveal the lowest privacy-preserving ability to defend the GRA, followed by those of GATs and GCNs, which indicates the importance of building more private representations with higher-order node information that could defend the potential threats, such as GRAs.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.