Computer Science > Computational Complexity
[Submitted on 13 Feb 2023]
Title:Geometric Barriers for Stable and Online Algorithms for Discrepancy Minimization
View PDFAbstract:For many computational problems involving randomness, intricate geometric features of the solution space have been used to rigorously rule out powerful classes of algorithms. This is often accomplished through the lens of the multi Overlap Gap Property ($m$-OGP), a rigorous barrier against algorithms exhibiting input stability. In this paper, we focus on the algorithmic tractability of two models: (i) discrepancy minimization, and (ii) the symmetric binary perceptron (\texttt{SBP}), a random constraint satisfaction problem as well as a toy model of a single-layer neural network.
Our first focus is on the limits of online algorithms. By establishing and leveraging a novel geometrical barrier, we obtain sharp hardness guarantees against online algorithms for both the \texttt{SBP} and discrepancy minimization. Our results match the best known algorithmic guarantees, up to constant factors. Our second focus is on efficiently finding a constant discrepancy solution, given a random matrix $\mathcal{M}\in\mathbb{R}^{M\times n}$. In a smooth setting, where the entries of $\mathcal{M}$ are i.i.d. standard normal, we establish the presence of $m$-OGP for $n=\Theta(M\log M)$. Consequently, we rule out the class of stable algorithms at this value. These results give the first rigorous evidence towards a conjecture of Altschuler and Niles-Weed~\cite[Conjecture~1]{altschuler2021discrepancy}.
Our methods use the intricate geometry of the solution space to prove tight hardness results for online algorithms. The barrier we establish is a novel variant of the $m$-OGP. Furthermore, it regards $m$-tuples of solutions with respect to correlated instances, with growing values of $m$, $m=\omega(1)$. Importantly, our results rule out online algorithms succeeding even with an exponentially small probability.
Current browse context:
cs.CC
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.