Computer Science > Computer Science and Game Theory
[Submitted on 16 Feb 2023]
Title:Analytically Tractable Models for Decision Making under Present Bias
View PDFAbstract:Time-inconsistency is a characteristic of human behavior in which people plan for long-term benefits but take actions that differ from the plan due to conflicts with short-term benefits. Such time-inconsistent behavior is believed to be caused by present bias, a tendency to overestimate immediate rewards and underestimate future rewards. It is essential in behavioral economics to investigate the relationship between present bias and time-inconsistency. In this paper, we propose a model for analyzing agent behavior with present bias in tasks to make progress toward a goal over a specific period. Unlike previous models, the state sequence of the agent can be described analytically in our model. Based on this property, we analyze three crucial problems related to agents under present bias: task abandonment, optimal goal setting, and optimal reward scheduling. Extensive analysis reveals how present bias affects the condition under which task abandonment occurs and optimal intervention strategies. Our findings are meaningful for preventing task abandonment and intervening through incentives in the real world.
Current browse context:
cs.GT
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.