Computer Science > Computation and Language
[Submitted on 17 Feb 2023]
Title:More Data Types More Problems: A Temporal Analysis of Complexity, Stability, and Sensitivity in Privacy Policies
View PDFAbstract:Collecting personally identifiable information (PII) on data subjects has become big business. Data brokers and data processors are part of a multi-billion-dollar industry that profits from collecting, buying, and selling consumer data. Yet there is little transparency in the data collection industry which makes it difficult to understand what types of data are being collected, used, and sold, and thus the risk to individual data subjects. In this study, we examine a large textual dataset of privacy policies from 1997-2019 in order to investigate the data collection activities of data brokers and data processors. We also develop an original lexicon of PII-related terms representing PII data types curated from legislative texts. This mesoscale analysis looks at privacy policies overtime on the word, topic, and network levels to understand the stability, complexity, and sensitivity of privacy policies over time. We find that (1) privacy legislation correlates with changes in stability and turbulence of PII data types in privacy policies; (2) the complexity of privacy policies decreases over time and becomes more regularized; (3) sensitivity rises over time and shows spikes that are correlated with events when new privacy legislation is introduced.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.