Computer Science > Computation and Language
[Submitted on 7 Mar 2023]
Title:Classifying Text-Based Conspiracy Tweets related to COVID-19 using Contextualized Word Embeddings
View PDFAbstract:The FakeNews task in MediaEval 2022 investigates the challenge of finding accurate and high-performance models for the classification of conspiracy tweets related to COVID-19. In this paper, we used BERT, ELMO, and their combination for feature extraction and RandomForest as classifier. The results show that ELMO performs slightly better than BERT, however their combination at feature level reduces the performance.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.