Statistics > Machine Learning
[Submitted on 8 Mar 2023]
Title:Optimal Sparse Recovery with Decision Stumps
View PDFAbstract:Decision trees are widely used for their low computational cost, good predictive performance, and ability to assess the importance of features. Though often used in practice for feature selection, the theoretical guarantees of these methods are not well understood. We here obtain a tight finite sample bound for the feature selection problem in linear regression using single-depth decision trees. We examine the statistical properties of these "decision stumps" for the recovery of the $s$ active features from $p$ total features, where $s \ll p$. Our analysis provides tight sample performance guarantees on high-dimensional sparse systems which align with the finite sample bound of $O(s \log p)$ as obtained by Lasso, improving upon previous bounds for both the median and optimal splitting criteria. Our results extend to the non-linear regime as well as arbitrary sub-Gaussian distributions, demonstrating that tree based methods attain strong feature selection properties under a wide variety of settings and further shedding light on the success of these methods in practice. As a byproduct of our analysis, we show that we can provably guarantee recovery even when the number of active features $s$ is unknown. We further validate our theoretical results and proof methodology using computational experiments.
Current browse context:
stat.ML
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.