Computer Science > Robotics
[Submitted on 8 Mar 2023 (v1), last revised 24 Jul 2023 (this version, v2)]
Title:Monte-Carlo Tree Search with Prioritized Node Expansion for Multi-Goal Task Planning
View PDFAbstract:Symbolic task planning for robots is computationally challenging due to the combinatorial complexity of the possible action space. This fact is amplified if there are several sub-goals to be achieved due to the increased length of the action sequences. In this work, we propose a multi-goal symbolic task planner for deterministic decision processes based on Monte Carlo Tree Search. We augment the algorithm by prioritized node expansion which prioritizes nodes that already have fulfilled some sub-goals. Due to its linear complexity in the number of sub-goals, our algorithm is able to identify symbolic action sequences of 145 elements to reach the desired goal state with up to 48 sub-goals while the search tree is limited to under 6500 nodes. We use action reduction based on a kinematic reachability criterion to further ease computational complexity. We combine our algorithm with object localization and motion planning and apply it to a real-robot demonstration with two manipulators in an industrial bearing inspection setting.
Submission history
From: Kai Pfeiffer [view email][v1] Wed, 8 Mar 2023 11:18:07 UTC (6,282 KB)
[v2] Mon, 24 Jul 2023 04:20:40 UTC (4,680 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.