Electrical Engineering and Systems Science > Signal Processing
[Submitted on 10 Mar 2023]
Title:An Adaptive GViT for Gas Mixture Identification and Concentration Estimation
View PDFAbstract:Estimating the composition and concentration of ambient gases is crucial for industrial gas safety. Even though other researchers have proposed some gas identification and con-centration estimation algorithms, these algorithms still suffer from severe flaws, particularly in fulfilling industry demands. One example is that the lengths of data collected in an industrial setting tend to vary. The conventional algorithm, yet, cannot be used to analyze the variant-length data effectively. Trimming the data will preserve only steady-state values, inevitably leading to the loss of vital information. The gas identification and concentration estimation model called GCN-ViT(GViT) is proposed in this paper; we view the sensor data to be a one-way chain that has only been downscaled to retain the majority of the original in-formation. The GViT model can directly utilize sensor ar-rays' variable-length real-time signal data as input. We validated the above model on a dataset of 12-hour uninterrupted monitoring of two randomly varying gas mixtures, CO-ethylene and methane-ethylene. The accuracy of gas identification can reach 97.61%, R2 of the pure gas concentration estimation is above 99.5% on average, and R2 of the mixed gas concentration estimation is above 95% on average.
Current browse context:
eess.SP
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.