Computer Science > Computational Geometry
[Submitted on 12 Mar 2023 (v1), last revised 17 May 2023 (this version, v2)]
Title:Sparse Higher Order Čech Filtrations
View PDFAbstract:For a finite set of balls of radius $r$, the $k$-fold cover is the space covered by at least $k$ balls. Fixing the ball centers and varying the radius, we obtain a nested sequence of spaces that is called the $k$-fold filtration of the centers. For $k=1$, the construction is the union-of-balls filtration that is popular in topological data analysis. For larger $k$, it yields a cleaner shape reconstruction in the presence of outliers. We contribute a sparsification algorithm to approximate the topology of the $k$-fold filtration. Our method is a combination and adaptation of several techniques from the well-studied case $k=1$, resulting in a sparsification of linear size that can be computed in expected near-linear time with respect to the number of input points. Our method also extends to the multicover bifiltration, composed of the $k$-fold filtrations for several values of $k$, with the same size and complexity bounds.
Submission history
From: Bianca B. Dornelas [view email][v1] Sun, 12 Mar 2023 14:06:56 UTC (294 KB)
[v2] Wed, 17 May 2023 10:11:40 UTC (305 KB)
Current browse context:
cs.CG
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.