Computer Science > Software Engineering
[Submitted on 13 Mar 2023 (v1), last revised 24 Jun 2024 (this version, v4)]
Title:Systematic Evaluation of Deep Learning Models for Log-based Failure Prediction
View PDF HTML (experimental)Abstract:With the increasing complexity and scope of software systems, their dependability is crucial. The analysis of log data recorded during system execution can enable engineers to automatically predict failures at run time. Several Machine Learning (ML) techniques, including traditional ML and Deep Learning (DL), have been proposed to automate such tasks. However, current empirical studies are limited in terms of covering all main DL types -- Recurrent Neural Network (RNN), Convolutional Neural network (CNN), and transformer -- as well as examining them on a wide range of diverse datasets.
In this paper, we aim to address these issues by systematically investigating the combination of log data embedding strategies and DL types for failure prediction. To that end, we propose a modular architecture to accommodate various configurations of embedding strategies and DL-based encoders. To further investigate how dataset characteristics such as dataset size and failure percentage affect model accuracy, we synthesised 360 datasets, with varying characteristics, for three distinct system behavioral models, based on a systematic and automated generation approach. Using the F1 score metric, our results show that the best overall performing configuration is a CNN-based encoder with Logkey2vec. Additionally, we provide specific dataset conditions, namely a dataset size >350 or a failure percentage >7.5%, under which this configuration demonstrates high accuracy for failure prediction.
Submission history
From: Fatemeh Hadadi [view email][v1] Mon, 13 Mar 2023 16:04:14 UTC (622 KB)
[v2] Thu, 26 Oct 2023 20:07:45 UTC (548 KB)
[v3] Tue, 30 Apr 2024 16:25:17 UTC (386 KB)
[v4] Mon, 24 Jun 2024 04:36:05 UTC (1,366 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.