Computer Science > Software Engineering
[Submitted on 16 Mar 2023]
Title:Knowledge Transfer for Pseudo-code Generation from Low Resource Programming Language
View PDFAbstract:Generation of pseudo-code descriptions of legacy source code for software maintenance is a manually intensive task. Recent encoder-decoder language models have shown promise for automating pseudo-code generation for high resource programming languages such as C++, but are heavily reliant on the availability of a large code-pseudocode corpus. Soliciting such pseudocode annotations for codes written in legacy programming languages (PL) is a time consuming and costly affair requiring a thorough understanding of the source PL. In this paper, we focus on transferring the knowledge acquired by the code-to-pseudocode neural model trained on a high resource PL (C++) using parallel code-pseudocode data. We aim to transfer this knowledge to a legacy PL (C) with no PL-pseudocode parallel data for training. To achieve this, we utilize an Iterative Back Translation (IBT) approach with a novel test-cases based filtration strategy, to adapt the trained C++-to-pseudocode model to C-to-pseudocode model. We observe an improvement of 23.27% in the success rate of the generated C codes through back translation, over the successive IBT iteration, illustrating the efficacy of our approach.
Current browse context:
cs.SE
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.