Computer Science > Machine Learning
[Submitted on 24 Mar 2023 (v1), last revised 30 Mar 2023 (this version, v2)]
Title:LON-GNN: Spectral GNNs with Learnable Orthonormal Basis
View PDFAbstract:In recent years, a plethora of spectral graph neural networks (GNN) methods have utilized polynomial basis with learnable coefficients to achieve top-tier performances on many node-level tasks. Although various kinds of polynomial bases have been explored, each such method adopts a fixed polynomial basis which might not be the optimal choice for the given graph. Besides, we identify the so-called over-passing issue of these methods and show that it is somewhat rooted in their less-principled regularization strategy and unnormalized basis. In this paper, we make the first attempts to address these two issues. Leveraging Jacobi polynomials, we design a novel spectral GNN, LON-GNN, with Learnable OrthoNormal bases and prove that regularizing coefficients becomes equivalent to regularizing the norm of learned filter function now. We conduct extensive experiments on diverse graph datasets to evaluate the fitting and generalization capability of LON-GNN, where the results imply its superiority.
Submission history
From: Qian Tao [view email][v1] Fri, 24 Mar 2023 02:07:46 UTC (206 KB)
[v2] Thu, 30 Mar 2023 02:25:54 UTC (206 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
Connected Papers (What is Connected Papers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.