Mathematics > Combinatorics
[Submitted on 24 Mar 2023]
Title:Roudneff's Conjecture in Dimension $4$
View PDFAbstract:J.-P. Roudneff conjectured in 1991 that every arrangement of $n \ge 2d+1\ge 5$ pseudohyperplanes in the real projective space $\mathbb{P}^d$ has at most $\sum_{i=0}^{d-2} \binom{n-1}{i}$ complete cells (i.e., cells bounded by each hyperplane). The conjecture is true for $d=2,3$ and for arrangements arising from Lawrence oriented matroids. The main result of this manuscript is to show the validity of Roudneff's conjecture for $d=4$. Moreover, based on computational data we conjecture that the maximum number of complete cells is only obtained by cyclic arrangements.
Current browse context:
math.CO
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.