Computer Science > Software Engineering
[Submitted on 25 Mar 2023]
Title:Combining Contexts from Multiple Sources for Documentation-Specific Code Example Generation
View PDFAbstract:Code example is a crucial part of good documentation. It helps the developers to understand the documentation easily and use the corresponding code unit (e.g., method) properly. However, many official documentation still lacks (good) code example and it is one of the common documentation issues as found by several studies. Hence in this paper, we consider automatic code example generation for documentation, a direction less explored by the existing research. We employ Codex, a GPT-3 based model, pre-trained on both natural and programming languages to generate code examples from source code and documentation given as input. Our preliminary investigation on 40 scikit-learn methods reveals that this approach is able to generate good code examples where 72.5% code examples were executed without error (passability) and 82.5% properly dealt with the target method and documentation (relevance). We also find that incorporation of error logs (produced by the compiler while executing a failed code example) in the input further improves the passability from 72.5% to 87.5%. Thus, our investigation sets the base of documentation-specific code example generation and warrants in-depth future studies.
Submission history
From: Junaed Younus Khan [view email][v1] Sat, 25 Mar 2023 19:25:20 UTC (5,066 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.