Computer Science > Machine Learning
[Submitted on 28 Mar 2023 (v1), last revised 30 Aug 2024 (this version, v5)]
Title:FedAgg: Adaptive Federated Learning with Aggregated Gradients
View PDF HTML (experimental)Abstract:Federated Learning (FL) has emerged as a crucial distributed training paradigm, enabling discrete devices to collaboratively train a shared model under the coordination of a central server, while leveraging their locally stored private data. Nonetheless, the non-independent-and-identically-distributed (Non-IID) data generated on heterogeneous clients and the incessant information exchange among participants may significantly impede training efficacy, retard the model convergence rate and increase the risk of privacy leakage. To alleviate the divergence between the local and average model parameters and obtain a fast model convergence rate, we propose an adaptive FEDerated learning algorithm called FedAgg by refining the conventional stochastic gradient descent (SGD) methodology with an AGgregated Gradient term at each local training epoch and adaptively adjusting the learning rate based on a penalty term that quantifies the local model deviation. To tackle the challenge of information exchange among clients during local training and design a decentralized adaptive learning rate for each client, we introduce two mean-field terms to approximate the average local parameters and gradients over time. Through rigorous theoretical analysis, we demonstrate the existence and convergence of the mean-field terms and provide a robust upper bound on the convergence of our proposed algorithm. The extensive experimental results on real-world datasets substantiate the superiority of our framework in comparison with existing state-of-the-art FL strategies for enhancing model performance and accelerating convergence rate under IID and Non-IID datasets.
Submission history
From: Yuan Wenhao [view email][v1] Tue, 28 Mar 2023 08:07:28 UTC (39 KB)
[v2] Sat, 1 Apr 2023 09:31:55 UTC (49 KB)
[v3] Wed, 29 Nov 2023 14:41:33 UTC (2,286 KB)
[v4] Fri, 12 Apr 2024 06:26:04 UTC (1,406 KB)
[v5] Fri, 30 Aug 2024 09:33:53 UTC (2,468 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.