Computer Science > Machine Learning
[Submitted on 28 Mar 2023]
Title:Cluster-Guided Unsupervised Domain Adaptation for Deep Speaker Embedding
View PDFAbstract:Recent studies have shown that pseudo labels can contribute to unsupervised domain adaptation (UDA) for speaker verification. Inspired by the self-training strategies that use an existing classifier to label the unlabeled data for retraining, we propose a cluster-guided UDA framework that labels the target domain data by clustering and combines the labeled source domain data and pseudo-labeled target domain data to train a speaker embedding network. To improve the cluster quality, we train a speaker embedding network dedicated for clustering by minimizing the contrastive center loss. The goal is to reduce the distance between an embedding and its assigned cluster center while enlarging the distance between the embedding and the other cluster centers. Using VoxCeleb2 as the source domain and CN-Celeb1 as the target domain, we demonstrate that the proposed method can achieve an equal error rate (EER) of 8.10% on the CN-Celeb1 evaluation set without using any labels from the target domain. This result outperforms the supervised baseline by 39.6% and is the state-of-the-art UDA performance on this corpus.
Current browse context:
cs.LG
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.