Computer Science > Information Theory
[Submitted on 30 Mar 2023]
Title:Linear Insertion Deletion Codes in the High-Noise and High-Rate Regimes
View PDFAbstract:This work continues the study of linear error correcting codes against adversarial insertion deletion errors (insdel errors). Previously, the work of Cheng, Guruswami, Haeupler, and Li \cite{CGHL21} showed the existence of asymptotically good linear insdel codes that can correct arbitrarily close to $1$ fraction of errors over some constant size alphabet, or achieve rate arbitrarily close to $1/2$ even over the binary alphabet. As shown in \cite{CGHL21}, these bounds are also the best possible. However, known explicit constructions in \cite{CGHL21}, and subsequent improved constructions by Con, Shpilka, and Tamo \cite{9770830} all fall short of meeting these bounds. Over any constant size alphabet, they can only achieve rate $< 1/8$ or correct $< 1/4$ fraction of errors; over the binary alphabet, they can only achieve rate $< 1/1216$ or correct $< 1/54$ fraction of errors. Apparently, previous techniques face inherent barriers to achieve rate better than $1/4$ or correct more than $1/2$ fraction of errors.
In this work we give new constructions of such codes that meet these bounds, namely, asymptotically good linear insdel codes that can correct arbitrarily close to $1$ fraction of errors over some constant size alphabet, and binary asymptotically good linear insdel codes that can achieve rate arbitrarily close to $1/2$.\ All our constructions are efficiently encodable and decodable. Our constructions are based on a novel approach of code concatenation, which embeds the index information implicitly into codewords. This significantly differs from previous techniques and may be of independent interest. Finally, we also prove the existence of linear concatenated insdel codes with parameters that match random linear codes, and propose a conjecture about linear insdel codes.
Current browse context:
cs.IT
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.