Computer Science > Computer Vision and Pattern Recognition
[Submitted on 7 Apr 2023 (v1), last revised 26 Apr 2024 (this version, v3)]
Title:Probing Conceptual Understanding of Large Visual-Language Models
View PDF HTML (experimental)Abstract:In recent years large visual-language (V+L) models have achieved great success in various downstream tasks. However, it is not well studied whether these models have a conceptual grasp of the visual content. In this work we focus on conceptual understanding of these large V+L models. To facilitate this study, we propose novel benchmarking datasets for probing three different aspects of content understanding, 1) \textit{relations}, 2) \textit{composition}, and 3) \textit{context}. Our probes are grounded in cognitive science and help determine if a V+L model can, for example, determine if snow garnished with a man is implausible, or if it can identify beach furniture by knowing it is located on a beach. We experimented with many recent state-of-the-art V+L models and observe that these models mostly \textit{fail to demonstrate} a conceptual understanding. This study reveals several interesting insights such as that \textit{cross-attention} helps learning conceptual understanding, and that CNNs are better with \textit{texture and patterns}, while Transformers are better at \textit{color and shape}. We further utilize some of these insights and investigate a \textit{simple finetuning technique} that rewards the three conceptual understanding measures with promising initial results. The proposed benchmarks will drive the community to delve deeper into conceptual understanding and foster advancements in the capabilities of large V+L models. The code and dataset is available at: \url{this https URL}
Submission history
From: Shehreen Azad [view email][v1] Fri, 7 Apr 2023 14:26:11 UTC (23,613 KB)
[v2] Wed, 25 Oct 2023 21:36:46 UTC (13,913 KB)
[v3] Fri, 26 Apr 2024 16:23:31 UTC (24,783 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.