Physics > Chemical Physics
[Submitted on 28 Mar 2023 (v1), last revised 14 Dec 2023 (this version, v3)]
Title:GeoTMI:Predicting quantum chemical property with easy-to-obtain geometry via positional denoising
View PDF HTML (experimental)Abstract:As quantum chemical properties have a dependence on their geometries, graph neural networks (GNNs) using 3D geometric information have achieved high prediction accuracy in many tasks. However, they often require 3D geometries obtained from high-level quantum mechanical calculations, which are practically infeasible, limiting their applicability to real-world problems. To tackle this, we propose a new training framework, GeoTMI, that employs denoising process to predict properties accurately using easy-to-obtain geometries (corrupted versions of correct geometries, such as those obtained from low-level calculations). Our starting point was the idea that the correct geometry is the best description of the target property. Hence, to incorporate information of the correct, GeoTMI aims to maximize mutual information between three variables: the correct and the corrupted geometries and the property. GeoTMI also explicitly updates the corrupted input to approach the correct geometry as it passes through the GNN layers, contributing to more effective denoising. We investigated the performance of the proposed method using 3D GNNs for three prediction tasks: molecular properties, a chemical reaction property, and relaxed energy in a heterogeneous catalytic system. Our results showed consistent improvements in accuracy across various tasks, demonstrating the effectiveness and robustness of GeoTMI.
Submission history
From: Hyeonsu Kim [view email][v1] Tue, 28 Mar 2023 17:07:12 UTC (7,977 KB)
[v2] Fri, 26 May 2023 05:01:25 UTC (1,151 KB)
[v3] Thu, 14 Dec 2023 19:01:25 UTC (689 KB)
Current browse context:
physics.chem-ph
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.