Statistics > Machine Learning
[Submitted on 9 Apr 2023 (v1), last revised 10 Nov 2023 (this version, v3)]
Title:PriorCVAE: scalable MCMC parameter inference with Bayesian deep generative modelling
View PDFAbstract:Recent advances have shown that GP priors, or their finite realisations, can be encoded using deep generative models such as variational autoencoders (VAEs). These learned generators can serve as drop-in replacements for the original priors during MCMC inference. While this approach enables efficient inference, it loses information about the hyperparameters of the original models, and consequently makes inference over hyperparameters impossible and the learned priors indistinct. To overcome this limitation, we condition the VAE on stochastic process hyperparameters. This allows the joint encoding of hyperparameters with GP realizations and their subsequent estimation during inference. Further, we demonstrate that our proposed method, PriorCVAE, is agnostic to the nature of the models which it approximates, and can be used, for instance, to encode solutions of ODEs. It provides a practical tool for approximate inference and shows potential in real-life spatial and spatiotemporal applications.
Submission history
From: Elizaveta Semenova [view email][v1] Sun, 9 Apr 2023 20:23:26 UTC (900 KB)
[v2] Wed, 12 Apr 2023 20:09:22 UTC (899 KB)
[v3] Fri, 10 Nov 2023 13:22:01 UTC (3,479 KB)
Current browse context:
stat.ML
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.