Computer Science > Computer Vision and Pattern Recognition
[Submitted on 10 Apr 2023]
Title:Multi-Sample Consensus Driven Unsupervised Normal Estimation for 3D Point Clouds
View PDFAbstract:Deep normal estimators have made great strides on synthetic benchmarks. Unfortunately, their performance dramatically drops on the real scan data since they are supervised only on synthetic datasets. The point-wise annotation of ground truth normals is vulnerable to inefficiency and inaccuracies, which totally makes it impossible to build perfect real datasets for supervised deep learning. To overcome the challenge, we propose a multi-sample consensus paradigm for unsupervised normal estimation. The paradigm consists of multi-candidate sampling, candidate rejection, and mode determination. The latter two are driven by neighbor point consensus and candidate consensus respectively. Two primary implementations of the paradigm, MSUNE and MSUNE-Net, are proposed. MSUNE minimizes a candidate consensus loss in mode determination. As a robust optimization method, it outperforms the cutting-edge supervised deep learning methods on real data at the cost of longer runtime for sampling enough candidate normals for each query point. MSUNE-Net, the first unsupervised deep normal estimator as far as we know, significantly promotes the multi-sample consensus further. It transfers the three online stages of MSUNE to offline training. Thereby its inference time is 100 times faster. Besides that, more accurate inference is achieved, since the candidates of query points from similar patches can form a sufficiently large candidate set implicitly in MSUNE-Net. Comprehensive experiments demonstrate that the two proposed unsupervised methods are noticeably superior to some supervised deep normal estimators on the most common synthetic dataset. More importantly, they show better generalization ability and outperform all the SOTA conventional and deep methods on three real datasets: NYUV2, KITTI, and a dataset from PCV [1].
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.