Astrophysics > Cosmology and Nongalactic Astrophysics
[Submitted on 20 Apr 2023]
Title:No evidence for p- or d-wave dark matter annihilation from local large-scale structure
View PDFAbstract:If dark matter annihilates into standard model particles with a cross-section which is velocity dependent, then Local Group dwarf galaxies will not be the best place to search for the resulting gamma ray emission. A greater flux would be produced by more distant and massive halos, with larger velocity dispersions. We construct full-sky predictions for the gamma-ray emission from galaxy- and cluster-mass halos within $\sim 200 \, {\mathrm{Mpc}}$ using a suite of constrained $N$-body simulations (CSiBORG) based on the Bayesian Origin Reconstruction from Galaxies algorithm. Comparing to observations from the Fermi Large Area Telescope and marginalising over reconstruction uncertainties and other astrophysical contributions to the flux, we obtain constraints on the cross-section which are two (seven) orders of magnitude tighter than those obtained from dwarf spheroidals for $p$-wave ($d$-wave) annihilation. We find no evidence for either type of annihilation from dark matter particles with masses in the range $m_\chi = 2-500 \, {\mathrm{GeV}}/c^2$, for any channel. As an example, for annihilations producing bottom quarks with $m_\chi = 10 \, {\mathrm{GeV}}/c^2$, we find $a_{1} < 2.4 \times 10^{-21} \, {\mathrm{cm^3 s^{-1}}}$ and $a_{2} < 3.0 \times 10^{-18} \, {\mathrm{cm^3 s^{-1}}}$ at 95% confidence, where the product of the cross-section, $\sigma$, and relative particle velocity, $v$, is given by $\sigma v = a_\ell (v/c)^{2\ell}$ and $\ell=1, 2$ for $p$-, $d$-wave annihilation, respectively. Our bounds, although failing to exclude the thermal relic cross-section for velocity-dependent annihilation channels, are among the tightest to date.
Current browse context:
astro-ph.CO
Change to browse by:
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.