Computer Science > Computer Vision and Pattern Recognition
[Submitted on 8 May 2023]
Title:SwinDocSegmenter: An End-to-End Unified Domain Adaptive Transformer for Document Instance Segmentation
View PDFAbstract:Instance-level segmentation of documents consists in assigning a class-aware and instance-aware label to each pixel of the image. It is a key step in document parsing for their understanding. In this paper, we present a unified transformer encoder-decoder architecture for en-to-end instance segmentation of complex layouts in document images. The method adapts a contrastive training with a mixed query selection for anchor initialization in the decoder. Later on, it performs a dot product between the obtained query embeddings and the pixel embedding map (coming from the encoder) for semantic reasoning. Extensive experimentation on competitive benchmarks like PubLayNet, PRIMA, Historical Japanese (HJ), and TableBank demonstrate that our model with SwinL backbone achieves better segmentation performance than the existing state-of-the-art approaches with the average precision of \textbf{93.72}, \textbf{54.39}, \textbf{84.65} and \textbf{98.04} respectively under one billion parameters. The code is made publicly available at: \href{this https URL}{this http URL}
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.