Computer Science > Software Engineering
[Submitted on 28 Apr 2023]
Title:Does Code Smell Frequency Have a Relationship with Fault-proneness?
View PDFAbstract:Fault-proneness is an indication of programming errors that decreases software quality and maintainability. On the contrary, code smell is a symptom of potential design problems which has impact on fault-proneness. In the literature, negative impact of code smells on fault-proneness has been investigated. However, it is still unclear that how frequency of each code smell type impacts on the fault-proneness. To mitigate this research gap, we present an empirical study to identify whether frequency of individual code smell types has a relationship with fault-proneness. More specifically, we identify 13 code smell types and fault-proneness of the corresponding smelly classes in the well-known open source systems from Apache and Eclipse ecosystems. Then we analyse the relationship between their frequency of occurrences based on the correlation. The results show that Anti Singleton, Blob and Class Data Should Be Private smell types have strong relationship with fault-proneness though their frequencies are not very high. On the other hand, comparatively high frequent code smell types such as Complex Class, Large Class and Long Parameter List have moderate relationship with fault-proneness. These findings will assist developers to prioritize code smells while performing refactoring activities in order to improve software quality.
Submission history
From: Md. Masudur Rahman [view email][v1] Fri, 28 Apr 2023 17:38:31 UTC (226 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.