Computer Science > Robotics
[Submitted on 30 May 2023 (v1), last revised 22 Feb 2024 (this version, v3)]
Title:Improving the performance of Learned Controllers in Behavior Trees using Value Function Estimates at Switching Boundaries
View PDF HTML (experimental)Abstract:Behavior trees represent a modular way to create an overall controller from a set of sub-controllers solving different sub-problems. These sub-controllers can be created in different ways, such as classical model based control or reinforcement learning (RL). If each sub-controller satisfies the preconditions of the next sub-controller, the overall controller will achieve the overall goal. However, even if all sub-controllers are locally optimal in achieving the preconditions of the next, with respect to some performance metric such as completion time, the overall controller might be far from optimal with respect to the same performance metric. In this paper we show how the performance of the overall controller can be improved if we use approximations of value functions to inform the design of a sub-controller of the needs of the next one. We also show how, under certain assumptions, this leads to a globally optimal controller when the process is executed on all sub-controllers. Finally, this result also holds when some of the sub-controllers are already given, i.e., if we are constrained to use some existing sub-controllers the overall controller will be globally optimal given this constraint.
Submission history
From: Petter Ögren [view email][v1] Tue, 30 May 2023 09:59:53 UTC (2,303 KB)
[v2] Mon, 12 Jun 2023 14:24:53 UTC (2,840 KB)
[v3] Thu, 22 Feb 2024 14:59:07 UTC (2,839 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.